Asia is a force to be reckoned with when it comes to research in the life sciences. Asian countries play a major role both in shaping international research practices and in the formulation of bioethical research regulation in the field of biomedical research and research applications, including stem cell research, genetic testing and screening, reproductive technologies and the banking of biological materials. Not only wealthy welfare societies such as Japan and Singapore but also large developing countries such as China and India, are strong global competitors at the forefront of biomedical research and biotech applications. These new fields of research, on the one hand, promise to yield revolutionary technologies and biomedical knowledge that could enhance the health and welfare of large populations of people, including diabetics, muscular dystrophy, Parkinson’s disease and Alzheimer’s disease. On the other hand, bioethical concerns have come about due to the novel and global nature of research in the life sciences and the application of resultant technologies. These concerns come from some regions where even the most basic healthcare is a scarce good.

In many fields however, biomedical knowledge has indeed contributed to biomedicine, health-care and technology, as well as to business, but it is also in conflict with the ethical tenets of social and cultural expectations. The norms of social and cultural expectations can be seen in the context of genetic and medical stereotypes. Despite these stereotypes, the development of these new research technologies is accompanied by old and new social, political, and cultural problems, such as the question of insinuating genetic and medical stereotypes into the medical environment and social life. Social stereotypes discussed in this chapter are the basis of the social, cultural, or institutional norms for the use of genetic and medical stereotypes (within social and cultural expectations). These stereotypes exist as the result of using new diagnostic technologies to develop individual health care or gene therapy. For example, one could conduct a study comparing how people’s attitudes towards using genetic technologies differ when the research is conducted for medical purposes and when the research is conducted for social purposes. The study could also compare how people’s attitudes towards using genetic technologies differ when the research is conducted for medical purposes and when the research is conducted for social purposes.

The ‘stem-cell gap’

The genetic teratogenesis and diagnosis and prediction of genetic diseases and conditions are a sociopolitical question of great importance. Genetic diseases are often of great concern to individuals. Genetic diseases are not only of concern because they are often inherited, but also because they can be transmitted from generation to generation. Genetic diseases can cause serious health problems and can also cause psychological distress. Genetic diseases can also cause financial and emotional distress. Genetic diseases can also cause social and economic distress. Genetic diseases can also cause educational and occupational distress. Genetic diseases can also cause psychological and emotional distress. Genetic diseases can also cause spiritual and psychological distress. Genetic diseases can also cause physical and psychological distress.

Regulating biotechnologies

Regulating biotechnologies to collect, store and dispose of biological materials from antisocial causes on a large scale is an important issue. The responsibility for the regulation of the collection, storage and disposal of biological materials is a complex issue. The responsibility for the regulation of the collection, storage and disposal of biological materials is a complex issue. The responsibility for the regulation of the collection, storage and disposal of biological materials is a complex issue. The responsibility for the regulation of the collection, storage and disposal of biological materials is a complex issue.

In many cases, the responsibility for the regulation of the collection, storage and disposal of biological materials is a complex issue. The responsibility for the regulation of the collection, storage and disposal of biological materials is a complex issue. The responsibility for the regulation of the collection, storage and disposal of biological materials is a complex issue. The responsibility for the regulation of the collection, storage and disposal of biological materials is a complex issue. The responsibility for the regulation of the collection, storage and disposal of biological materials is a complex issue.

In some cases, the responsibility for the regulation of the collection, storage and disposal of biological materials is a complex issue. The responsibility for the regulation of the collection, storage and disposal of biological materials is a complex issue. The responsibility for the regulation of the collection, storage and disposal of biological materials is a complex issue. The responsibility for the regulation of the collection, storage and disposal of biological materials is a complex issue. The responsibility for the regulation of the collection, storage and disposal of biological materials is a complex issue.

The ‘embryo donor gap’

In many cases, the responsibility for the regulation of the collection, storage and disposal of biological materials is a complex issue. The responsibility for the regulation of the collection, storage and disposal of biological materials is a complex issue. The responsibility for the regulation of the collection, storage and disposal of biological materials is a complex issue. The responsibility for the regulation of the collection, storage and disposal of biological materials is a complex issue. The responsibility for the regulation of the collection, storage and disposal of biological materials is a complex issue.

In some cases, the responsibility for the regulation of the collection, storage and disposal of biological materials is a complex issue. The responsibility for the regulation of the collection, storage and disposal of biological materials is a complex issue. The responsibility for the regulation of the collection, storage and disposal of biological materials is a complex issue. The responsibility for the regulation of the collection, storage and disposal of biological materials is a complex issue. The responsibility for the regulation of the collection, storage and disposal of biological materials is a complex issue.

In many cases, the responsibility for the regulation of the collection, storage and disposal of biological materials is a complex issue. The responsibility for the regulation of the collection, storage and disposal of biological materials is a complex issue. The responsibility for the regulation of the collection, storage and disposal of biological materials is a complex issue. The responsibility for the regulation of the collection, storage and disposal of biological materials is a complex issue.